Biophysical and biochemical constraints imposed by salt stress: learning from halophytes
نویسندگان
چکیده
Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world's 5.2 billion ha of agricultural dry land, have already suffered erosion, degradation, and salinization. Halophytes are typically considered as plants able to complete their life cycle in environments where the salt concentration is above 200 mM NaCl. Salinity adjustment is a complex phenomenon but essential mechanism to overcome salt stress, with both biophysical and biochemical implications. At this level, halophytes evolved in several directions, adopting different strategies. Otherwise, the lack of adaptation to a salt environment would negatively affect their electron transduction pathways and the entire energetic metabolism, the foundation of every plant photosynthesis and biomass production. The maintenance of ionic homeostasis is in the basis of all cellular counteractive measures, in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation with biochemical counteractive mechanisms, integrating data from photosynthetic light harvesting complexes, electron transport chains to the quinone pools, carbon fixation, and energy dissipation metabolism.
منابع مشابه
Improving Effects of Salicylic Acid on Morphological, Physiological and Biochemical Responses of Salt-imposed Winter Jasmine
To investigate the positive effects of salicylic acid (SA) on morphological and biochemical traits of salinity stress-imposed winter jasmine, an experiment was conducted in a research greenhouse. The experiment was conducted using a factorial experiment based on completely randomized design with four levels of salinity stress (2, 4, 6, and 8 dS.m-1) as the first factor and different levels of S...
متن کاملSalinity Tolerance Mechanism of Economic Halophytes From Physiological to Molecular Hierarchy for Improving Food Quality
Soil salinity is becoming the key constraints factor to agricultural production. Therefore, the plant especially the crops possessing capacities of salt tolerance will be of great economic significance. The adaptation or tolerance of plant to salinity stress involves a series of physiological, metabolic and molecular mechanisms. Halophytes are the kind of organisms which acquire special salt to...
متن کاملHalophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters
Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tole...
متن کاملBiophysical and Biochemical Markers of Metal/Metalloid-Impacts in Salt Marsh Halophytes and Their Implications
As a major sink, estuarine/salt marsh ecosystem can receive discharges laden with myriads of contaminants including metals/metalloids from man-made activities. Two among the major consequences of metal/metalloid-exposure in estuarine/salt marsh ecosystem flora such as halophytic plants are: (a) the excessive accumulation of light energy that in turn leads to severe impairments in the photosyste...
متن کاملSalt Induces Features of a Dormancy-Like State in Seeds of Eutrema (Thellungiella) salsugineum, a Halophytic Relative of Arabidopsis
The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress. In addition, halophytes could provide a food source on marginal lands. However, despite halophytes being salt-tolerant plants, the seeds of several halophytic species will not germinate on sal...
متن کامل